



# **Novel Embedded Computer**

## **Architectures for KASSPER**

**Matt French** 

**University of Southern California /Information Sciences Institute** 

www.east.isi.edu

**April 15th, 2003** 



### **Motivation**



- KASSPER algorithms blend Knowledge processing with traditional signal processing
- Traditional Signal Processing
  - □ FLOPs
- **■** Knowledge Processing
  - **□** Database Access Rates
  - **□** Large Memory Structures
- New Set of Computer Architecture Parameters Stressed
  - **□** Memory Latency
  - □ I/O Throughput
  - **☐** Multi-threaded Application Performance
  - □ Data Locality



#### Processor-DRAM Gap (latency)





### **Research Goals**



- Identify emerging embedded computing technology capable of meeting KASSPER real-time demands
  - □ Processors In Memory (PIM)
  - **□** Stream Processors
  - **□** Tile Processors
  - □ PowerPC baseline
- Develop KASSPER look-ahead scheduling kernels





# DARPA Vector Intelligent RAM (VIRAM, Berkeley)



- **Merge DRAM with Vector Processor**
- mixed logic-DRAM CMOS process
- Scalar MIPS processor core
- 6.4 16-bit GOPS, 1.6 GFLOPS
  - □ 4 float ALUs; 8 32bit int ALUs; 16 16bit ALUs
- 12.8 GB/s peak memory access
- 13 MB DRAM
- 15 x 18 mm; IBM Foundry
- Chips fabbed in Q1 '03, ISI board on schedule for June
- C/C++ w/ pragmas, ASM; Cray PDGCS compiler
- Can add additional external DRAM
- http://iram.cs.berkeley.edu/







# Imagine Streaming Processor (Stanford)



- 300 MHz, VLIW SIMD machine
- **28 16-bit GOPS, 14 GFLOPS**
- 128 kB Streaming Register File
- 8 ALU Clusters
  - □ 6 ALUs / cluster
  - □ 84-95% ALU utilization typical
  - □ 256 x 32 bit local register file
- Streaming Memory Buffers
  - □ re-order DRAM accesses
  - □ expose data locality
  - □ ALU Intra-cluster BW 435 GB/sec
  - □ DRAM BW 2.1 GB/sec
- 16 x 16 mm; TI Foundry
- StreamC & KernelC programming languages
- Network interface for scalability
- Chip and board functional; Verifying benchmarks
- http://cva.stanford.edu/







# Raw (MIT)



- 16 tiles of MIPS R4000 @ 300 MHz
  - **□ 4.6 GOPS or GFLOPS**
- 4 Communication Networks
  - □ 2 Static Networks,
    - 1 cycle throughput
    - 3 cycle latency
    - 38.3 GB / sec
  - **□ 2 Dynamic Networks**
- 14 External Ports (I/O or DRAM)
  - **□** 33.5 GB/sec
- C and ASM; gcc based compiler
- 18.2 x 18.2 mm; IBM Foundry
- Fully scalable architecture
- Chip and board functional; Verifying benchmark performance
- http://www.cag.lcs.mit.edu/raw/







# **Preliminary Benchmarks**



- Benchmarks provided by LM NE&SS
- Corner Turn
  - **☐** Memory Data Movement
- Coherent Sidelobe Canceller (CSLC)
  - □ FFT -> Apply Weight -> IFFT
- **■** Beam Steering
  - ☐ High Data Parallelism, Large Calibration Lookup Tables



Speedup of execution time compared to PowerPC with Altivec

|             | PPC G4 | VIRAM | Imagine | Raw  |
|-------------|--------|-------|---------|------|
| Clock (MHz) | 1000   | 200   | 300     | 300  |
| # of ALUs   | 4      | 16    | 48      | 16   |
| Peak GFLOPS | 5      | 3.2   | 14.4    | 4.64 |

☐ University chips are one silicon generation behind commercial PPC



## **Summary**



- PIM, Stream Processors, and Tile based Processors have shown significant gains over traditional processors in high memory BW kernels
- KASSPER systems stress memory accesses in new way
- Trade off analysis of database lookahead scheduling time versus STAP processor throughput

